Fórmulas matemáticas para los grados 1 a 5 de primaria
1. Ley conmutativa de la suma: la suma de dos números intercambia las posiciones de los sumandos y la suma permanece sin cambios.
2. La ley de la combinación aditiva: al sumar tres números, sume los dos primeros números primero, o sume los dos últimos números primero y luego sume el tercer número, y la suma permanece sin cambios.
3. La ley de la multiplicación y el intercambio: cuando se multiplican dos números, la posición del factor de intercambio permanece sin cambios.
4. La ley asociativa de la multiplicación: Cuando se multiplican tres números, los dos primeros números se multiplican entre sí, o los dos últimos números se multiplican primero, y luego se multiplica el tercer número, y sus El producto permanece sin cambios.
5. Ley distributiva de la multiplicación: Cuando se multiplican dos números por el mismo número, se pueden multiplicar los dos sumandos por el número respectivamente, y luego se suman los dos productos, y el resultado permanece sin cambios.
Por ejemplo: (2 4) × 5 = 2× 5 4× 5
6. mismo múltiplo al mismo tiempo, y el cociente constante. Dividido por cualquier número que no lo sea.
Multiplicación simple: multiplicación con O al final del multiplicando y multiplicando. Primero puedes multiplicar el 1 antes de O, los ceros no participan en la operación, y agregar unos cuantos ceros al final del producto.
7. ¿Qué es una ecuación? La fórmula según la cual el valor del lado izquierdo del signo igual es igual al valor del lado derecho del signo igual.
Esto se llama ecuación.
Propiedades básicas de las ecuaciones: Si ambos lados de la ecuación se multiplican (o dividen) por el mismo número al mismo tiempo, la ecuación sigue siendo válida.
8. ¿Qué es una ecuación? Respuesta: Una ecuación con números desconocidos se llama ecuación.
9. ¿Qué es una ecuación lineal de una variable? Respuesta: Una ecuación que contiene un número desconocido y el grado del número desconocido es 1 se llama ecuación lineal de una variable.
Aprende los métodos de ejemplo y cálculos de ecuaciones lineales de una variable. Es decir, da un ejemplo para sustituir la fórmula por χ y calcularla.
10. Fracción: Divide la unidad "1" uniformemente en varias partes. El número que representa dicha parte o varios puntos se llama fracción.
11. Suma y resta de fracciones: Al sumar y restar fracciones con denominadores, solo se suman y restan los numeradores, y el denominador permanece sin cambios. Para sumar y restar fracciones con diferentes denominadores, primero divide, luego suma y resta.
12. Comparación de tamaños de fracciones: En comparación con el denominador, el numerador es más grande y el numerador es más pequeño. Para comparar fracciones con diferentes denominadores, primero divide y luego compara; si los numeradores son iguales, los denominadores son mayores y menores.
13. Multiplica fracciones y números enteros El producto de fracciones y números enteros es el numerador y el denominador permanece sin cambios.
14. Al multiplicar fracciones por fracciones, el producto del numerador es el numerador y el producto del denominador es el denominador.
15, una fracción dividida por un número entero (distinto de 0) es igual a la fracción multiplicada por el recíproco del número entero.
16. Fracción propia: Una fracción cuyo numerador es menor que el denominador se llama fracción propia.
17. Fracción impropia: Una fracción cuyo numerador es mayor que el denominador o cuyo numerador es igual al denominador se llama fracción impropia. Una puntuación falsa es mayor o igual a 1.
18. Números mixtos: Escribe las fracciones impropias como números enteros, y las fracciones propias se llaman números mixtos.
19. Propiedades básicas de las fracciones: El numerador y el denominador de una fracción se multiplican o dividen por el mismo número al mismo tiempo.
(Excepto 0), la puntuación permanece sin cambios.
20. Dividir un número por una fracción es igual a multiplicar el número por el recíproco de la fracción.
21. El número A dividido por el número B (excepto 0) es igual al recíproco del número A por el número B.