La Red de Conocimientos Pedagógicos - Conocimientos históricos - Al final del quinto grado, llegaron todos los exámenes simulados.

Al final del quinto grado, llegaron todos los exámenes simulados.

Preguntas del examen final de matemáticas de quinto grado de primaria (1)

Puntuaciones del nombre de la categoría

Rellene los espacios en blanco. (24 puntos)

1. Tanto el cuboide como el cubo tienen () caras, () aristas y () vértices. Un cubo es un paralelepípedo rectangular.

2. Un cuboide tiene como máximo () caras con áreas iguales y como máximo () lados con longitudes iguales.

3. Entre los diez números naturales del 1 al 10, existen () para los números impares, () para los números pares, () para los números primos, () para los números compuestos y () que son ni números primos ni compuestos).

4. La unidad decimal es (). Tiene () dichas unidades decimales. Sumando () dichas unidades decimales es el número impar más pequeño.

5,50 centímetros cuadrados = () decímetros cuadrados

16 horas = () 250 ml por día = () litros.

6. Divida el cable de 7 metros de largo en 8 partes iguales, cada parte tiene 7 metros de largo () y cada parte tiene () metro de largo.

7. El factor primo de la descomposición de 24 es ().

8. El número primo más pequeño es () y el número compuesto más pequeño es ().

9.El máximo común divisor de 15 y 16 es (), y el mínimo común múltiplo de 15, 30 y 60 es ().

2. Decide si las siguientes afirmaciones son correctas. (16 puntos)

1. El área superficial y el volumen de un cubo con una longitud de 6 decímetros son iguales. ( )

2. Todos los números pares son números compuestos. ( )

3. Hay al menos un número primo entre dos números relativamente primos. ( )

4.0 es el número compuesto más pequeño ()

Tercero, elige el número de la respuesta correcta y complétalo entre paréntesis. (16 puntos)

1. El factor primo de descomponer 18 es ().

①18=3×6 ②18=2×3×3 ③18=1×2×3×3

2.

①Números primos ②Números impares ③Números pares

3, 3/4 y 12/16 ().

①Igual tamaño ②Mismo significado ③La unidad de fracción es la misma.

4. Entre las siguientes fracciones, las que no se pueden convertir a decimales finitos son ().

①1/4 ②1/5 ③1/6

Cuarto, problemas de aplicación. 34 puntos

1. Hay 36 niños y 31 niñas en la clase 5 (1) de la escuela primaria de Dainan. ¿Cuál es el porcentaje de niños en la clase? ¿Cuál es el porcentaje de niños respecto de niñas?

2. El equipo de construcción de la carretera construyó una carretera. El primer día se construyó el camino en toda su longitud. El segundo día, ¿cuánto quedó?

3. Utiliza láminas de hierro para hacer un tanque de agua rectangular sin tapa, de 10 decímetros de largo, 8 decímetros de ancho y 5 decímetros de alto. ¿Cuántos decímetros cuadrados de chapa de hierro se deben utilizar al menos? ¿Cuántos litros de agua puede contener este tanque?

4. El maestro Zhang hizo 11 piezas en 4 días, el maestro Liu hizo 11 piezas en 3 días y el maestro Wang hizo 10 piezas en 4 días. ¿Quién corre más rápido? ¿Quién es el más lento?

5. Después de dividir por una fracción, obtienes 5/6. Se sabe que la suma de los denominadores de las moléculas originales es 55. ¿Cuál es la puntuación bruta?

Preguntas del examen final de matemáticas de quinto grado de primaria (1)

Puntuaciones del nombre de la categoría

Rellena los espacios en blanco. (24 puntos)

1. Tanto el cuboide como el cubo tienen (6) caras, (12) aristas y (8) vértices. Un cubo es un paralelepípedo rectangular (especial).

2. Un cuboide tiene como máximo (4) caras con la misma área y como máximo (4) lados con la misma longitud.

3. Entre los 10 números naturales del 1 al 10, el número impar es (1 3 5 7 9), el número par es (2 4 6 8 10), el número primo es (2 3 5). 7), y el número compuesto es (4 6 8 9 10), no es ni primo ni primo.

4. La unidad decimal es (). Tiene () dichas unidades decimales. Sumando () dichas unidades decimales es el número impar más pequeño.

5,50 centímetros cuadrados = (5000) decímetros cuadrados.

16 horas = () 250 ml = (0,25) litro.

6. Divida el cable de 7 metros de largo en 8 partes iguales, cada parte tiene 7 metros () de largo y cada parte tiene 8/7 metros de largo.

7. El factor primo de la descomposición de 24 es (2*2*3).

8. El número primo más pequeño es (2) y el número compuesto más pequeño es (4).

9.El máximo común divisor de 15 y 16 es (1), y el mínimo común múltiplo de 15, 30 y 60 es (60).

Incorrecto: -Correcto:

2. Determina si las siguientes afirmaciones son correctas. (16 puntos)

1. El área superficial y el volumen de un cubo con una longitud de 6 decímetros son iguales. ( )

2. Todos los números pares son números compuestos. (-)

3. Hay al menos un número primo entre dos números primos relativos. (-)

4.0 es el número compuesto más pequeño (-)

En tercer lugar, elige el número de la respuesta correcta y complétalo entre paréntesis. (16 puntos)

1. El factor primo de descomponer 18 es (2).

①18=3×6 ②18=2×3×3 ③18=1×2×3×3

2.

①Números primos ②Números impares ③Números pares

3, 3/4 y 12/16 (1).

①Igual tamaño ②Mismo significado ③La unidad de fracción es la misma.

4. De las siguientes fracciones, la que no se puede convertir a decimales finitos es (3).

①1/4 ②1/5 ③1/6

Otros son demasiado simples, ¡piénsalo tú mismo!

Respuesta: Luz de luna y alas - Mago Nivel 5 1-6 15:34

05 Examen final de Matemáticas del primer semestre de quinto grado

Nombre de la clase y número de estudiantes

1. Cálculo (53)

1, número escrito directamente (9 puntos)

24÷2×0,3= 3,2÷8×4= 500 5,999 =

5 2.5×4= 1-0.25÷0.5= 2 1.07=

1.5-1.5÷1.5= 8.8÷0.11= 125-0×8=

2. Utilice expresión vertical para calcular (el resultado debe mantenerse con dos decimales) (6 puntos)

6.276÷0.73= 301.5×0.483=

3. ecuación para calcular (Se puede simplificar) (24 puntos)

(40-0.6)×(8.5 5) 4.1 9.9×5.2

4.82×35 51.7×3.5 0.35 88×0.125

6.4÷(40×3.2) [0.85 (9.25 0.65)÷0.2]×20

4 Resuelve la ecuación (6 puntos)

8x-. 5=3(x 20 ) x-0.8x=6.5×24

5. Cálculo de barras (8 puntos)

(1) 5 multiplicado por un número menos 2,35, la diferencia. es 2,35, encuentre este número.

⑵ Suma el producto de 6 y 1,4 por 5,3 y la suma se reducirá 10 veces. ¿Cuál fue el resultado?

2. Preguntas de solicitud (30)

1. Hay 182 personas de una escuela que participan en el grupo de ciencia y tecnología del Palacio de los Niños, y el número de niños es 1,6 veces. el de las niñas. ¿Cuántos niños y niñas participan en el grupo de tecnología de esta escuela?

2. Xiao Ming y Xiao Ying partieron de dos lugares separados por 1240 metros y caminaron en direcciones opuestas. La velocidad de Xiao Ming es de 80 metros/minuto y la velocidad de Xiaoying es de 75 metros/minuto. ¿Cuantos minutos se encontraron?

3. El maestro y el aprendiz procesan 389 piezas juntos. El maestro procesa 42 piezas por hora, y el aprendiz procesa 34 piezas por hora. El maestro y el aprendiz procesan juntos durante 4 horas, y el aprendiz completa el proceso. descansar. ¿Cuántas horas más necesitará trabajar el aprendiz?

4. La escuela primaria Xinhua donó dinero al Proyecto Esperanza.

Las cuatro clases de cuarto grado donaron un promedio de 95,20 yuanes cada una, y las tres clases de quinto grado donaron 3.065.438 yuanes o 0,35 yuanes. ¿Cuánto donó cada clase de cuarto y quinto grado?

5. Para construir la autopista, el plan original era construir 0,52 metros por día y completarla en 40 días. De hecho, cada día se realizaron 0,12 millones más de reparaciones de las previstas originalmente. ¿Cuántos días tardará realmente en completarse?

6. Calcula el área de abajo (unidad: decímetro)

3. Concepto (17)

1, (8 puntos)

(1) 100 decímetros cuadrados = () centímetros cuadrados = 5 toneladas 24 kilogramos = () toneladas.

(2) Entre los 4 números: 7, 3, 0 y 0,03, el número más grande es () y el número más pequeño es ().

(3) El área de una recta triangular es 90 metros cuadrados, la base es 118 y la altura correspondiente es ().

(4) Si tanto el dividendo como el divisor son mayores que cero, y el divisor es menor que 1, el cociente () es el dividendo.

5] Mueve el punto decimal 26.1 tres lugares a la izquierda y luego dos lugares a la derecha para obtener (), que es () más pequeño que el número original.

2. Juicio (5 puntos)

(1) Después de eliminar el "0" en 5.0200, el tamaño del decimal permanece sin cambios. ……… ( )

Los triángulos rectángulos tienen una sola altura. …………………………………………( )

(3)En un número positivo, el promedio de varios números debe ser menor que el número máximo.

Número mayor que el menor. …………………………………………( )

(4) Si las áreas de dos triángulos son iguales, entonces los dos triángulos deben ser iguales.

Las alturas inferiores son iguales. ……………………………………………( )

5. Redondea el número decimal de dos dígitos para obtener un valor aproximado de 5.

El valor máximo de este número de dos cifras es 5,4. ………………………………( )

(4 puntos)

(1)-metro se refiere a dividir 1 metro uniformemente en () partes, tome la de 3 porciones.

a, 3 B, 100 C, 10 D, 4

El resto de 0,15 dividido por 18,7 es ().

a, 0.1 B, 1 C, 0.01 D, 10

(3) El área del aula de la Clase 5 (1) es de aproximadamente 48().

a, metro b, decímetro cuadrado c, metro cúbico d, metro cuadrado

(4) En un triángulo isósceles, un ángulo mide 50° y los otros dos ángulos miden ( ).

a, 65 B, 50 y 65.

c. Los dos primeros son posibles D. Incierto

Mira quién puede escribir más palabras usando los siguientes radicales.

Puerta_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _门

2. Método de formación de palabras.

Khan () elementos () mangas ()

Sequía () detalles () petróleo ()

3.

()El sabor es profundo y largo, y son tres () cinco () () flores () hierba.

Desde () desde () () no () () de repente me di cuenta.

4. Completa las palabras apropiadas entre paréntesis.

()barba()sonrisa()montaña

()ojos()adiós al lago()

5.

Viajar a la luz de las velas por la noche () es como un pez en un estanque ().

Segundo, fax de texto.

1(), el hermano mayor está triste. Esta es una oración de "". "Discípulo" se refiere a (). Este poema nos dice ().

2. No conozco la verdadera cara del Monte Lu. Es una frase del poeta () Chao en "".

3. Hay alegrías y tristezas, (), (), hay flores y frutos, (). (

), esta es la alegría de cultivar flores.

4. El vino de Zhumen huele fatal, ().

5. Chai Men escuchó ladridos de perros.

Copia las siguientes frases.

1 Aunque las flores y las plantas tendrán dificultades por sí solas, si no me preocupo por ellas y dejo que se las arreglen solas, la mayoría de ellas morirán de todos modos.

¿No es cierto que no se puede alimentar una flor sin trabajo?

Hija, todas las verduras que comemos se cultivan en este jardín y los cereales integrales se recogen del suelo.

¡Cuando seas grande recuerda que tienes tu propio dinero!

Cuarto, lee el mundo

El aprendiz de cerrajero

El viejo cerrajero ha reparado cerraduras innumerables veces en su vida. Tiene excelentes habilidades y honorarios razonables, y es. profundamente respetado por la gente.

El viejo cerrajero es viejo. Para no perder sus propias habilidades, seleccionó a dos jóvenes y planeó transmitirles sus habilidades.

Después de un tiempo, ambos jóvenes aprendieron muchas habilidades. Pero sólo uno de ellos pudo conseguir la verdadera biografía, por lo que el viejo cerrajero decidió hacerles una prueba.

El viejo cerrajero preparó dos cajas fuertes y pidió a sus dos aprendices que las abrieran. El que tarde menos tiempo será el ganador. Como resultado, el primer aprendiz tardó menos de 10 minutos en abrir la caja fuerte y el segundo aprendiz tardó media hora. Todo el mundo piensa que ganará el primer aprendiz.

El viejo cerrajero preguntó a su aprendiz: "¿Qué hay en la caja fuerte?" Los ojos del discípulo mayor se iluminaron: "Maestro, hay mucho dinero dentro, todos ellos billetes de cien dólares. " Le hizo la misma pregunta al segundo discípulo. El segundo discípulo dudó mucho tiempo y dijo: "Maestro, no vi nada adentro. Sólo me pidió que abriera la cerradura y la abrí". p>

El viejo cerrajero estaba muy feliz y anunció solemnemente que su segundo aprendiz era su sucesor oficial. El maestro y el aprendiz estaban insatisfechos y todos estaban desconcertados. El viejo cerrajero sonrió y dijo: "No importa en qué industria se encuentre, debe cumplir su palabra, especialmente en nuestra industria, debemos tener una alta ética profesional. Acepté a mi aprendiz y lo entrené para que fuera un cerrajero experto. Él debe ten en mente una cerradura y nada más, y haz la vista gorda ante el dinero. De lo contrario, serás egoísta y codicioso, y será fácil llegar a la puerta o abrir la caja fuerte para retirar dinero. Las cerraduras de reparación deben tener una que no se pueda romper. Abrir cerradura."

1Explique la palabra en contexto.

La esencia de un oficio o técnica adquirida bajo la guía de un maestro

Fácil como un suspiro

2 ¿Qué significa "uno" en las siguientes palabras? ?

Una habilidad, un examen, un destello en la sartén, una flor de verano.

Crea una oración

Especial

4. ¿Cómo entiendes la siguiente oración?

Todo reparador de cerraduras debe tener una cerradura que no pueda abrirse.

5.

Requisito: Recuerda una escena o evento que observas habitualmente, piensa en ello detenidamente y saca algo de ello.