La Red de Conocimientos Pedagógicos - Currículum vitae - Composición después de la escuela

Composición después de la escuela

Después...

Escuela

Inglés

Yo

normalmente

voy

Inicio

Después...

Escuela, pero

A veces

Yo

juego

>

Con

mi

amigo

en

este

parque infantil

En

nuestra

escuela

normalmente

jugamos

fútbol

<. p>porque

creemos

que

es

más

diversión

que

correr

y

es

emocionante

. y

el fútbol

es

popular

en

nuestra

escuela. A veces

jugamos

tenis

de mesa

juntos. Y

es

interesante

para

nosotros

también. Yo

normalmente

hago

muchas

cosas. y

Me

salí

feliz

después...

de la escuela.

Después de la escuela

Traducción al chino

Normalmente voy a casa después de la escuela, pero a veces juego al fútbol con mis amigos en el patio de recreo. Solemos jugar al fútbol con nosotros porque creemos que es más divertido y emocionante que correr. El fútbol es muy popular en nuestra escuela. A veces jugamos juntos al tenis de mesa. También es divertido para nosotros. Normalmente hago muchas cosas útiles. Siempre estoy feliz después de la escuela.

上篇: Preguntas del examen real de AqiePreguntas y respuestas del examen integral de geometría de la escuela secundaria (tiempo 120 puntos, puntuación total 100 puntos) 1. Complete los espacios en blanco (***22 puntos por esta pregunta, 2 puntos por cada espacio en blanco) 1. Los dos lados del triángulo son 9 y 2, y el tercer lado es un número impar, por lo que el tercer lado es 2. △ABC. De manera similar, la longitud máxima del lado de △a′b′c′ es 10, entonces el área de △a′b′c′ es 4. Las cuerdas AC y BD se cruzan en E en el círculo y ∠ BEC = 130, luego ∠ ABCD =. El área de △AOB es 0,6. Las longitudes de los dos ángulos rectos de un triángulo rectángulo son 5 cm y 12 cm respectivamente, y la longitud mediana de la hipotenusa es 0,7. La longitud de la base superior del trapezoide es 2, la longitud media es 5 y la longitud de la base inferior del trapezoide es 0,9. Como se muestra en la figura, los dos conjuntos de lados del cuadrilátero ABCD se extienden para satisfacer E y F respectivamente. Si DF=2DA, 65438+. Si BC=a, ∠ B = 30, entonces AD es igual. 2. Preguntas de opción múltiple (esta pregunta vale 44 puntos, cada pregunta vale 4 puntos) 1. El ángulo suplementario de un ángulo es complementario de su ángulo suplementario. Entonces este ángulo es [] A.30 B.45 C.60 D.75 2. El cuadrilátero obtenido al conectar los puntos medios de cada lado del trapecio isósceles es [] A. Rectángulo Cuadrado c Rombo d. Como se muestra en la figura, DF∨EG∨BC, AD=DE=EB. △ABC se divide en tres partes, la relación de área es []a 1:2:3b 1:1:1:4:9d. Si el radio de ambos círculos es 4. Entonces la relación posicional entre estos dos círculos es [] A.Intersección b.Incisión c.Exterior d.Exterior 5. Dado que el ángulo central del sector es 120 y el radio es 3 cm, el área del sector es [] 6. Dado que la hipotenusa de Rt△ABC es 10 y el radio del círculo inscrito es 2, la longitud de los dos lados rectángulos es [ B Una línea recta entre y paralela a dos líneas paralelas. La distancia entre dos líneas paralelas es igual a 2 cm. Una recta paralela cuya distancia de estas dos rectas paralelas es igual a 1 cm. 8. La recta secante PBC dibuja un círculo en un punto fuera del círculo y corta los puntos B y C. La recta tangente PM, m es el punto tangente. Si PB=2, BC=3, entonces la longitud de PM es [] 9. Se sabe que: ABC, EF∨CD y ∠ ABC = 20, ∨. Entonces el grado de ∠BCF es []a 160 b 150 c . Como se muestra en la figura OA=OB, el punto C está en OA, el punto D está en OB, OC=OD, AD y BC se cruzan en e, los triángulos congruentes en la figura* *son [] A.2 a B.3 a C.4 a D.5 a 11. Una figura que es tanto axialmente simétrica como centralmente simétrica es [] A. Triángulo isósceles b. Trapezoide isósceles c. Pregunta de cálculo (esta pregunta * * * 65438 7 puntos cada una) Primero vi el barco a 30 ° al suroeste de b, y media hora después vi el barco a 60 ° al suroeste de b. Calcule la velocidad del barco. 2. Se sabe que el radio de ⊙O es 2 cm, PAB es la secante de ⊙O, Pb = 4 cm, PA = 3 cm y PC es ⊙. 4 puntos por cada pregunta)1. Como se muestra en la figura, en △ABC, BF⊥AC, CG⊥AD, F y g son reglas verticales, d y e son los puntos medios de BC y FG respectivamente. Evidencia:DE⊥FG2. Como se muestra en la figura, en el paralelogramo, AE∨BC, D, AF=CE, FG. ed intersecta a AC en Q, y la línea de extensión de ED intersecta a AB en p. Demuestre: PDQE=PEQD 4. Como se muestra en la figura, en el trapezoide ABCD, ABcd, AD=BC, el círculo o con diámetro AD corta a ab en el punto e, y la tangente EF del círculo o corta a BC en el punto f. Prueba: (1) ∠ def =. (2) EF⊥BC 5. Como se muestra en la figura, ⊙O cadena AC, BD cruza F, la intersección F es EF∨AB, la intersección DC se extiende hasta E, la intersección E es tangente a ⊙O EG y G es el punto tangente Demuestre: EF=EG Respuestas de referencia a las preguntas 1 del examen integral de geometría de la escuela secundaria. Complete los espacios en blanco (esta pregunta*) 4 puntos por cada pregunta) 1. B2 . cada uno AB = ∴MN=20 (km), es decir, el barco navega 20 km en media hora, la velocidad del barco es 40 km/h, PC es o, CD, la tangente de OP, RT △ OCD, RT. △OPC IV. 下篇: Desafío de inglés