La Red de Conocimientos Pedagógicos - Currículum vitae - [Reimpresión] Varios conceptos erróneos sobre la transformada fraccionaria de Fourier

[Reimpresión] Varios conceptos erróneos sobre la transformada fraccionaria de Fourier

En primer lugar, se trata de la representación del orden de la transformada fraccionaria de Fourier. Muchos investigadores ahora están acostumbrados a utilizar el ángulo de rotación del dominio fraccionario de Fourier en relación con el dominio del tiempo para expresar el orden del dominio fraccionario relativo de Fourier. Esto no comprende completamente la palabra "orden fraccional". El llamado dominio fraccionario de Fourier significa que el ángulo de rotación del dominio de transformación con respecto al dominio del tiempo es un múltiplo fraccionario de 90 grados. Es diferente de las FFT e IFFT anteriores, que son 1 y -1 veces 90 grados respectivamente. Por lo tanto, esta transformación se llama transformada fraccionaria de Fourier, por lo que es extremadamente inapropiado utilizar ángulos de rotación para representar órdenes fraccionarios. En segundo lugar, a muchos investigadores ahora siempre les gusta comparar la transformada fraccional de Fourier con análisis de tiempo-frecuencia, como la transformada de Fourier de tiempo corto, la transformada wavelet y la transformada de Wigner, y por lo tanto dudan del valor práctico de la transformada fraccional de Fourier. Creo que esto se debe a una comprensión insuficiente de las características del análisis generalizado de tiempo-frecuencia de cambios fraccionarios de Fourier. En primer lugar, hay que decir que la transformada fraccionaria de Fourier no es un análisis tiempo-frecuencia en el sentido tradicional. Es simplemente un análisis tiempo-frecuencia generalizado que no resuelve completamente el problema del posicionamiento y la resolución tiempo-frecuencia. las limitaciones de la transformada de Fourier tradicional. Por lo tanto, lo que tenemos que hacer es construir un nuevo sistema de análisis de tiempo-frecuencia basado en la transformada fraccionaria de Fourier, como la transformada fraccionaria de Fourier de tiempo corto, la transformada fraccionaria de paquetes wavelet, etc. Finalmente, algunos investigadores ahora siempre usan la transformada D-CHIRP en lugar de la transformada fraccionaria de Fourier, lo que significa ignorar el último producto chirp. Creo que esto no transforma la señal al dominio fraccional de Fourier, es decir, solo se transforma al dominio de Fourier tradicional y en realidad no utiliza la señal chirp como portadora. La transformada fraccionaria de Fourier se puede dividir en tres pasos. El primer paso es multiplicar la base del chirrido de tiempo; el segundo paso es realizar la operación FFT; el tercer paso es multiplicar la base del chirrido de frecuencia;